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exceed a few MeV. Also the calculation of V in I and I I 
is approximate. In particular, the main contribution to 
V from the attractive part of VAN, namely that in the P 
state, has been calculated in an approximation of 
uncertain accuracy. 

Still our results show—at least qualitatively—that 
there is no serious discrepancy between the calculated 

I. INTRODUCTION 

IN the scattering of electrons by a nucleus, the emis­
sion of photons depends on the nuclear magnetic 

moment as well as on the nuclear charge. Sarkar1 has 
obtained the bremsstrahlung cross section correspond­
ing to a spin-independent (i.e., classical) nuclear mag­
netic moment. I t is the purpose of this paper to deter­
mine the effects of nuclear spin on the cross section, to 
obtain the angular and energy distributions of the 
radiated particles, and to show that, as in the Coulomb 
case, the infrared divergence is spurious. 

The results presented parallel those of Bethe and 
Heitler,2 and of Gluckstern, Hull, and Breit3 for 
bremsstrahlung in the Coulomb field. 

An electromagnetic potential is introduced to repre­
sent the nucleus 

-4,(r) = ( - v x v l f o Z ) f - 1 , (1.1) 

where /x and Z are the nuclear magnetic moment and 
atomic number. The relative magnitude of the magnetic 
and Coulomb interactions with the electron is con­
sidered by Newton,4 the ratio being 

»\q\/eZ=(\<l\»/»N)/2McZ, (1.2) 

* Based on a thesis presented in partial fulfillment of the require­
ments for the degree of Doctor of Philosophy at Indiana Univer­
sity, 1963. 
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and measured binding energy of a A-particle in heavy 
hypernuclei. 
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where M is the mass of the nucleon, IXN the nuclear 
magneton, and q a momentum transfer characteristic 
of the scattering process. Evidently, magnetic scatter-

\ ing is of greatest importance for high-energy electrons, 
the effect decreasing with Z. Unless the momentum 
transfer is comparable with the nuclear mass, the exist­
ence of magnetic properties of the nucleus is almost 

1 completely masked by the nuclear charge. 
The assumption that the nucleus does not recoil is 

admittedly unrealistic for very light nuclei, since it is 
necessary that the experiments be performed at high 

; energies. The most serious violation of this approxima­
tion, scattering from the proton, has been considered by 
Berg and Lindner.5 

I t is interesting to note that polarized targets, 
suitable for scattering experiments, are currently under 
investigation.6 

L 

' II. THE DIFFERENTIAL CROSS SECTION 

The electromagnetic potential is treated in the first 
Born approximation. If (po,iZ£o) denotes the four-

1 momentum of the incident electron, (p,iE) that of the 
electron after scattering, then the cross section for 
emission of a photon with momentum k and polariza­
tion direction £, is1 

da= (Z2e«/87r2Xkdk/q*)(p/p0) Tr(.4++J3+) 

> ________ X(H+E)(A+B)(Ho+EojdQdQk, (2.1) 

5 R. A. Berg and C. N. Lindner, Phys. Rev. 112, 2072 (1958). 
; 6 O. Chamberlain, C. D. Jeffries, C. Schultz, and G. Shapiro, 

Bull. Am. Phys. Soc. 8, 38 (1963). 
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where 

P A T R I C K J . D O W L I N G 

The momentum transfer to the nucleus is 

q = P o - p - k (2.6) 
A==(irY/eZhoTt(H'+E0)yoyA(q)/(kA), (2.2) a n d 

B^W/eZ)y0yA^q)(H^+E)Tey0/(kAo), (2.3) A = ( * E - p . k ) / * , A 0 = ( * £ 0 - P o - k ) / * , (2.7) 

pr! = pp+kn, pli" = pQV.— k „ . (2.8) 
A,(q) = (27r2g2)-1(ty x q, ieZ). (2.4) 

That there is no interference between charge and 
™v , , • • +i , r fn „ „ n -+u 4-x.r, ~ ,™^-~~ magnetic scattering is evident, after some algebraic 
The notation is that of reference one. with the exception &. . . . & _ , _ . x ' . j , f. . 
, J . _ . x . .̂ TT .A. manipulation, from Eq. (2.1). Gluckstern e/ a/.,3 and 

that the Dirac matrices are anti-Hermitian: .«, 5 , . , ,, , , , , , ,. , 7 , , 
May7 derived that part of the cross section dependent 

JU,*>=1 ,2 ,3 ,4 7 4 = n o . 

on the nuclear charge. The cross section for brems-
(2.5) strahlung in the field of a static (i.e., nonspin-dependent) 

magnetic dipole is given by Sarkar1,8: 

da = (e 6/8TT2) (MtxN)~2 (pkdk/pQ) (dttdttk/q*) { 2 (L • e ) 2 - i L 2 { 2 - A / A 0 - A 0 / A 
- (gV* 2 ) [ (p-2)VA 2 +(po^ 

+ 4 ( p . e ) 2 / A 2 ] / 2 £ 2 K L - p ) W 
L = y X q . (2.9) 

This cross section vanishes if the momentum transfer 
is parallel to the magnetic moment, that is, if 

y x q = 0 . (2-10) 

III. NUCLEAR SPIN MODIFICATIONS 

Newton4 has pointed out that the static treatment of 
the nuclear moment is an unnecessary restriction, re­
moved in the following manner. Modification of the 
interaction to include nuclear spin effects results in re­
placing y in the scattering amplitude by matrix ele­
ments of the magnetic moment operator y. between 
initial and final nuclear spin states, labeled by Jm and 
Jf/m', respectively. The components of the operator 
y do not commute, so that, in the cross section, Eq. 
(2.9), 

v a v b - > | ( v a y b + t j f b y a ) . (3.1) 

More explicitly, the replacement is 

X ( / W | t i - b | / m ) + ( a < ^ b ) . (3.2) 

The final nuclear spin, not observed, has been summed. 
Reduction of the sum on / ' and m' is accomplished 

by using the decomposition and factorization theorems 
for spherical vector operators,9 with the result that 

element (the square of) which appears as a multiplica­
tive factor in the cross section. 

The nuclear magnetic moment is defined as 

M = ( / / | i M | / / ) , (3.4) 

£ j ' m ' (Jm IV • a I J'm') (J'm' \yh\ Jm) = 
W-vll-0-

J(J+i) 

X Z » ' ( ^ w | J - a | / w O ( / w ' | J - b | / w ) . (3.3) 

All reference to y is contained in the reduced matrix 

7 M. M. May, Phys. Rev. 84, 265 (1951). 
8 Sarkar's result omits a factor of four. 
9 M. E. Rose, Elementary Theory of Angular Momentum (John 

Wiley & Sons, Inc., New York, 1957), p. 94 ff. 

where n is the polarization direction in the initial nuclear 
state (the axis of quantization). This may also be 

written as 
/ i = ( / | | J - V | | / ) / ( / + l ) . (3.5) 

The sum on m' in Eq. (3.3) is elementary, and equals 

a - b [ J ( / + l ) - w 2 ] + a . ^ b ^ [ 3 w 2 - / ( / + l ) ] . (3.6) 

Combining Eqs. (3.3), (3.5), and (3.6), the replacement 
to be made in the cross section Eq. (2.9) is 

V . a V . b - * i O * / / ) 2 { a . b [ 7 ( / + l ) - w 2 ] 

+ a ^ b ^ [ 3 w 2 - / ( / + l ) ] } . (3.7) 

In the same way, 

U 2 - > / * * ( / + 1 ) / / . (3.8) 

Of particular interest is the case / equal to one-half, 
for no correlation is then predicted with respect to the 
polarization direction it. 

Since Eq. (3.7) is independent of the sign of m, it is 
also correct for aligned nuclei. 

If the initial state is unpolarized m is averaged. Thus, 
from Eq. (3.7) 

V - a u - b - ^ M
2 a . b ( / + l ) / 7 

and Eq. (3.8) is unchanged. 

(3.9) 

IV. THE CROSS SECTION FOR POLARIZED NUCLEI 

Incorporating Eqs. (3.7) and (3.8) in Eq. (2.9), the 
cross section for scattering from a polarized nucleus is 
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da=(e«/8T2)(tx/M»N)Kp/po)(kdk/q*)(dQdtik/2J2) 

X [ { / ( / + l ) - m 2 } { 2 ( q X 2 ) 2 + i ^ 2 - A / A ^ 

+ ( V £ ) ( q X ^ q x p o p - e / A - q X ^ q x p p o ^ / A o ) + ^ 
X(po^ ) 2 /Ao 2 -2qxp .qxp 0 p-£po^ /AAo]R^ 
X [ ( p - e ) 2 / A 2 + ( p 0 ^ ) 2 / A 0

2 ^ 
+ g 2 ( q x k ^ ) 2 / 2 & 2 A A 0 + ( 2 / & ^ 

- / ( / + l ) ^ 2 { 2 - A / A o - A o / A - ( 5
2 A 2 ) C ( p ^ ) 2 / A 2 + ( p o ^ ) 2 / A o 2 - 2 p ^ p o - V A A o ] } ] . (4.1) 

This result, for the emission of a photon in the presence of a polarized nucleus of spin / , complements that derived 
by May7 for the Coulomb potential. 

The quantum-mechanical condition corresponding to Eq. (2.10) is 

^ X q = 0 . (4.2) 

When Eq. (4.2) is valid, the cross section Eq. (4.1) has the form 

J < 7 ^ V 1 6 7 T 2 ) ( M / M ^ 

- ( ? 2 / £ 2 ) [ ( p ^ ) ^ 
+ (qX£) 2 / 2AAo+(2 /£ 2 ) [ ( ^Xpo)^ (4.3) 

The cross section vanishes identically in the classical limit, J ~^<x>/m agreement with the result of Sec. I I . This, of 
course, is a manifestation of the correspondence principle. 

In general, the cross section Eq. (4.3) is not identically zero, even if the nucleus is completely polarized. The 
quantity 

(Jm\32-(J^)2\Jm) = J(J+l)-m2 

occurring in Eq. (4.3) (this is a measure of the deviation of the component of angular momentum perpendicular to 
ii, from the expectation value zero) is positive, even if \m\ is equal to / . 

V. THE CROSS SECTION FOR UNPOLARIZED NUCLEI 

Summing Eq. (4.1) over m, or, equivalently, introducing the replacements Eqs. (3.8) and (3.9) in Eq. (2.9), gives 
the cross section for scattering from an unpolarized nuclear target. 

da= ( e V 8 7 r 2 ) [ ( / + l ) / 3 / ] ( ^ 

+ (p^)2(g2+4^2)/2A2+(po^)2(g2+4^)/2Ao2+^2(A/Ao+Ao/A+2+g2/AA0)]. (5.1) 

In the limit /—><*>, Eq. (5.1) becomes the classical result.1 A similar remark pertains to Eq. (4.1), for a com­
pletely polarized nucleus, \m\=J. 

VI. PHOTON POLARIZATION SUM 

Summation over the polarization directions of the photon, in Eqs. (4.1) and (5.1), leads to magnetic analog 
of the Bethe-Heitler formula. The cross section for scattering by a classical magnetic moment distribution is, from 
Eq. (2.9) 

da= (eQ/S^)(Mm)-Kp/po)(kdk/q")dmQk{2(LXky- (L 2 ) (2 -A/A 0 -A 0 /A) 

+ ( 5 2 / 2 ^ ) ( L 2 ) [ ( p X ^ ) V A 2 + ( p o X l ) V A o 2 - 2 p o X ^ p X V A A 0 ] + 4 ( L . p o / M ) ( L . p - L 4 p ^ ) 
-4 (L-p /Mo) (L .po-L^po4)+^- 2 (L-po) 2 [^ 2 /AA 0 +2(pX^) 2 /A 2 ]+^- 2 (L .p ) 2 

X[g2 /AAo+2(poX^)2 /Ao2]-2L.pL.p0(g2+2pX^PoX^)A2AAo}. (6.1) 

If the nucleus is unoriented, the cross section, from Eq. (5.1), is 

^ 7 = ( e y 8 7 r 2 ) [ ( / + 4 ^ 
+ (pX^)2(g2+4^o2) /2A2+(poX^)2(g2+4^)/2Ao2+^2(A/Ao+Ao/A+2+^2 /AAo)]. (6.2) 

VH. THE INTEGRATED BREMSSTRAHLUNG CROSS SECTION 

In this section, the bremsstrahlung cross section for scattering from an unpolarized nucleus, Eq. (5.1), is in­
tegrated over the direction of the scattered electron. The integrals involved are discussed in the appendix to Ref. 10. 
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The notation of Gluckstern and Hull10 is adopted: 

€ = l n [ ( E + # ) / ( E - £ ) ] , €o = ln [ (E 0 +po) / (£o-#o) ] , € r = l n [ ( r + # ) / ( r - # ) ] , 

T = p 0 - k , L=\nZ(EEo-rn2+pPo)/(EE0-fn
2-ppo)l. (7.1) 

Integration of Eq. (5.1), after considerable simplification, yields the following cross section: 

da= (e6/47r)[(/+l)/3Jjv/MfjiN)2(p/Po)(dk/k)dttk 

X { ( e 7 ^ ) [ - 2 m 2 r 2 / A 0
2 + ( £ W 

+ (L/2A0*ppo)[k2Ao2+2M*kAQ+2M*(EEo-M (7.2) 

The result, Eq. (7.2), assumes that the polarization of the photon is not observed. If this polarization is observed, 
then it is sufficient to consider only photons polarized in the p0k plane,10 that is, 

e=[kt2a+E(T2-p2-2kE)by2\pQxk\ , (7.3) 

a=2T/ / 2 , h=k/E, t2=T2+p2. (7.4) 

The cross section, for the production of photons polarized according to Eq. (7.3), is 

<fo==(^/4ir)(]ti/J^^ 
+ (k2/2T2)(kA0+p2+EkK+(e/p){(2EEo+k2-2m2^ 

+ E ( 2 ^ > 2 - w 2 ) ] / ( p o - e ) 2 } K V 2 A o ^ 

X [ - 2 E o ^ A o 2 + 2 A o ( 2 w ^ - E V ) + 2 w 2 ( E £ o - w 2 ) ] ] + ^ 2 ( ^ - A o ) / 2 A 0 r 2 - 2 } . (7.5) 

These two results, Eqs. (7.2) and (7.5), correspond to 
dai and dan (for the Coulomb potential) in the work of 
Gluckstern and Hull. 

Finally, the cross section, Eq. (7.2), is integrated over 
the direction of the photon. From this integration re­
sults the energy spectrum of the emitted radiation, 
which, again after much simplification, is 

da=e^(J+l)/6Jjfi/Mm)2(p/po)(dk/k) 

X l(kL/pp0)(2k+m2eo/po-m2e/p) 

+ («o/pPo)(p2+po2)l. (7.6) 

The symmetry of this equation under interchange of 
(po,iEo) and (p,iE) is to be expected from detailed 
balance, together with the fact that integration over the 
direction of both final particles is symmetric under the 
same interchange (& = £0—E—> — k). 

The cross section, Eq. (6.1), for polarized nuclei, has 
also been integrated over the direction of the scattered 
electron, but the result, which is rather long, will not be 
given here. 

VIII. POLARIZATION DEPENDENCE FOR FIXED 
ELECTRON RECOIL DIRECTION 

Gluckstern et al.z show that, with the direction of the 
scattered electron fixed, the dependence of the brems-

the polarization direction of the photon is 

dor= [_A+B cos2</>+C sin20]d&ft2jfc 

- [A -D+2D cos^-fo^dQdtik, 5.1) 

where D= (£ 2+C 2) 1 / 2 , tan2<fc>=C/£. </> is the direction 
of e in a plane perpendicular to k. Reference to Eq. (4.1) 
shows that a similar relation is valid for the magnetic 
process. Thus, the cross section including both effects 
has the form of Eq. (8.1), but, of course, with different 
coefficients, A, B, C, D. 

The analysis of Ref. 3 demonstrates that the radia­
tion can be interpreted as consisting of an unpolarized 
part and a linearly polarized part, with intensities pro­
portional to A-D and 2D, respectively. 

IX. PAIR PRODUCTION 

The bremsstrahlung and pair production cross sec­
tions are connected by the (four-momentum) sub­
stitutions11: 

fa -*P-> P- - p+1 k—>k. (9.1) 

Combining Eqs. (2.1) and (9.1), and making the 
requisite change in the density of states factor, the cross 
section for production of an electron-positron pair of 

strahlung cross section, for the Coulomb potential, on momenta p_ and p+ , from a photon of momentum k, is 

fo= - {eyW)(Mm)-Kp+p^dE+/k)(dtt+dttJq*) 

X { 2 ( L ^ ) 2 - f ( L ) 2 { 2 + A V A _ + A V A + - ( ^ ^ 
+4L- eL-p_p+ 3/&A++4L- eL-p+p_- ̂ /M_+2(L-p_)2(p+- e)2/k2A+

2 

+2(L.p4.)2(p_^)2A2A_2+4L.P 4 .L.p_A2A+A_-g2(L- l)2 /2A+A_}. (9.2) 

» R. L. Gluckstern and M. H. Hull, Phys. Rev. 90, 1030 (1953). 
11 J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (Addison-Wesley Publishing Company, Reading, 

Massachusetts, 1955). 
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I n E q . (9.2): 

q = p _ + p + - k , 

A + = ( £ £ + - p + - k ) / & , A _ = ( * E _ - p - . k ) / A . (9.3) 

All of the results presented in the preceding sections can 
be modified in the same way except Eq. (7.6), which 
involves integration over the photon direction. 

X. THE INFRARED DIVERGENCE 

The bremsstrahlung cross section is characterized by 
a factor dk/k, where k is the photon energy. Integration 
with respect to this variable (0<k<Eo—m) leads to a 
divergence in the limit k —> 0. That this divergence is 
actually nonexistent in an experimentally observable 
cross section was shown first by Schwinger12 for the 
case of single photon production in the Coulomb field. 
The argument is that an experiment cannot distinguish 
between a true elastic scattering event and a process in 
which an extremely soft photon (with energy less than 
some minimum Ae, determined by the resolution of the 
experimental apparatus) is emitted. Thus, the elastic 
cross section and the cross section for soft photon emis­
sion must be combined in order to calculate a cross sec­
tion to be compared with experiment. Since the brems­
strahlung cross section is of order a2 A2, where A M is the 
vector potential, it is also necessary to include the 
radiative correction to elastic scattering (since the cross 
term between this amplitude and the elastic amplitude 
is of order a2A2), as well as the effect of vacuum 
polarization. 

A. The Mass Operator 

Calculation of the radiative correction to elastic scat­
tering is based on the concept of the mass operator. The 
formulation considered13 depends on a modification of 
the Dirac equation of the following form: 

(7H-AO1HO, 

Tr^pit—eA^. 

(10.1) 

(10.2) 

The effect of the external field A M on the motion of the 
electron, with all virtual processes excluded, is deter­
mined by 7rM. My the mass operator, symbolizes all 
(virtual) radiative effects in the field A^. In position 
representation, the mass operator, correct to first order 
in e2 (and exact in the external field Ap), is14 

M(x,x') = tn8(x—x/)-\-ie2yliG(x,x/)yfJLD(x,x'). (10.3) 

G is the (out-going wave) Green's function for the elec­
tron, and D the photon propagator. 

Newton13 has considered the operator form of this 

12 J. Schwinger, Phys. Rev. 76, 790 ft. (1949), especially p. 812. 
13 R. G. Newton, Phys. Rev. 94, 1773 (1954). 
14 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). 

equation 

M--
d% 1 r d*k 1 

= m+ie2 eikxyti.{m+yir)~ly}Xe-ikxy (10.4) 
J (2TT)4&2 

and developed an expansion in powers of eA. The one-
photon mass operator, Eq. (10.3), to first order in eA, is 

ia f00 

M\-=m-\ / ds 
4TTJ 0 

due~isum2 

x.f 
where 

mi(u,s,k)= I dve~isuv(1~v)k2 

d% 
-eikxmi{u,s,k), (10.5) 

X{mu(u-l)aF+l2-u+2u%l-v) 

-Usm2u{u2- \)v(l-2v)~]yj}. (10.6) 

Fpj, and JM are Fourier transforms of the field and current 
operators, defined by 

r dAx 
A^A(i(k) = / A Ax)*-**. (10.7) 

J (2TT)2 

In both Eq. (10.5) and Eq. (10.7), x is an operator. 

B. The Cross Section 

Newton13 gives a derivation of the differential scat­
tering cross section in a context facilitating calculations 
with the mass operator. A Dirac equation of the form 

(yp+m+3Q)f=Q (10.8) 

is considered, with 3C describing all effects of the electro­
magnetic field. If p and q are the momenta of the elec­
tron before and after scattering, respectively, than the 
cross section is 

da/dtt = 2TT4 Tr (m ~yp)(p\H\ q) 

X(m-7?)(q |Yo# + Yo|p) , (10.9) 

H=(l+5CGo)-\ Go=(m+yp)~K (10.10) 

The interaction 

3C=-eyA-eyA'+Mi (10.11) 

accounts for both elastic scattering and a radiative proc­
ess involving one virtual photon, in addition to the 
vacuum polarization term, A/, related to A,, according 
to15 

a r1 

i 4 / W = AlM(k) dv(l-v 
2ir Jo 

r™ ds [ r 
xj07 e x prl 

0 

k2 

m2-\—(1-z;2) 
4 

(10.12) 

15 J. Schwinger, Phys. Rev. 82, 678 (1951). 
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Matrix elements of the mass operator are calculated 
from Eq. (10.5): 

(p | M11 q) = aiyJ(k)+ia2aF(k), (10.13) 

k = p - q . (10.14) 

The (field-independent) coefficients, a\ and #2, are also 
determined from Eq. (10.5). 

Because of a nonallowed expansion in powers of eA, 
the mass operator is actually infrared divergent. Di­
vergences of this type are discussed in detail by 
Schwinger12 and by Newton,13,16 who show that intro­
duction of a nonzero photon mass e makes the ex­
pansion valid and, at the same time, prevents the(inte-
grated) bremsstrahlung cross section from diverging. 
The physical reason for the divergences is that the pho­
ton mass is zero, and the procedure for combining the 
divergent amplitudes for radiative processes is to assume 
a photon mass e and to attempt to eliminate terms 
diverging as e —> 0. 

The result of the calculation, which is straightfor­
ward, is that the cross section for scattering in an arbi­
trary electromagnetic potential A^ including radiative 
effects to first order, is 

*«*(*) = [1 - «(0,Ae)>(0). (10.15) 

Since 8(6, Ae) is independent of the potential, it is identi­
cal with the function derived by Schwinger12 and 
Newton13 for Coulomb scattering. 

16 R. G. Newton, Phys. Rev. 96, 1523 (1954). 

As is easily verified from Eq. (10.9), the elastic cross 
section for scattering by a magnetic dipole distribution 
is 

<x(B) = 4TT V(Mm)~ 2 (V- q)~4 

X { ( p - q ) 2 [ y X ( p - q ) ] 2 + 4 ( 1 i x p . q ) 2 } . (10.16) 

The modifications for nuclear spin (Sec. I l l ) apply also 
to this result. 

The possibility of the emission of very soft quanta 
(which need not be observed, and, in fact, are assumed 
unobservable) thus necessitates a correction to the elas­
tic cross section. This correction simultaneously per­
mits elimination of the infrared divergence associated 
with bremsstrahlung. 

Since Eq. (10.15) already includes emission of quanta 
with energy less than Ae(Ae<^m), the cross section for 
electron scattering with energy loss not greater than 
AE(Ae<AE<E0-m) is the sum of Eqs. (10.15) and 
(4.1), the latter having been integrated over the photon 
variables with Ae<k<AE. The dependence on Ae then 
cancels and the cross section is finite. If AE=Eo—m, 
the cross section with the final electron energy not ob­
served is obtained. The resulting integrals, however, are 
rather complicated. 
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